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INTRODUCTION

Modeling of road vehicle collisions devel-
oped over the years. One of the problems mostly 
considered was a determination of the coefficient 
of restitution which is an important parameter 
when a vehicle crash is considered, either in pla-
nar or in resultant motion. Several papers were 
devoted to determine or at least specify a magni-
tude of this coefficient either for the frontal or for 
the side impact collision [2, 4] where the authors 
attempted to review the current trends in collision 
modeling, or even for the high speed collisions 
[15] where the author assumed the dependence 
of the restitution coefficient on the mutual loca-
tion of both vehicles and the speed. Some of them 

based on the simplified tools, such as the spring 
– mass – damper systems as in [25].

In [5] and [6] the stiffness and the mass 
based coefficient of restitution was considered 
as a basis to accident reconstruction, along with 
the basic Newton’s law of motion. Of course, the 
coefficient of restitution is not the only param-
eter of a road accident as it was presented in [3] 
or [11] where other necessary parameters of a 
collision were identified. In order to understand 
the collision process via the collision model-
ing research was conducted in various aspects 
beginning with a mathematical model based on 
a planar motion of the vehicles involved [7, 9] 
and ending with some more complex models, 
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containing analyzes on three dimensional mo-
tion during the collision [1, 14].

Some specific problems related to the col-
lision modeling or reconstruction also were the 
subject of multiple works. One of them is the im-
pact analysis presented in [8] where the problem 
of interlocking of the colliding parts of vehicles 
was considered, or in [10] where the equations of 
impulse and momentum were used.

Other problems can be related to the loss of 
the kinetic energy of a vehicle during a collision 
[12] and the uncertainty of the collected results 
related to the velocity change and the loss of the 
kinetic energy [13].

An important aspect of the collision theory 
seems to be determination of the point of applica-
tion of the impact force impulse at the beginning 
of a collision [19] as well as the restitution of the 
force impulses during a collision [24].

Also several works undertaken some various 
aspects of the use and determination of a restitu-
tion coefficient [30], such as dividing it into two 
components: one parallel (tangential) and one 
perpendicular (normal) to the common plane of 
the mutual contact of vehicles (e.g. [16]) as well 
as dependence of the coefficient of restitution on 
the initial velocity of a collision [36].

One of the important additions to the colli-
sion theory is performing the computer simula-
tions used to verify the analytical calculations 
during accident reconstruction. The use of a spe-
cific PC-Crash software to create a basis to veri-
fication of the simulation results was presented 
in [40] whereas in [23] the same software was 
used to analyze the results of pedestrian impact 
collisions.

The coefficient of restitution was also deter-
mined on the basis of real crash tests as in [26] 
and plays an important role in the process of 

collision reconstruction, which can be observed 
in some selected works, such as [32] and [33].

In this paper a specific simulation of a side 
oblique vehicles collision was carried out (Fig. 1) 
in order to analyze the influence of the adopted 
coefficient of restitution in two directions (the 
normal and the tangential) versus the mutual 
plane of a crash (the common vertical plane of 
the contact between the colliding vehicles) on the 
results of calculations with the use of a mathemat-
ical model based on [37]. Preliminary analysis 
has been presented in [38] but in this paper some 
certain results were obtained and compared with 
the results of the crash simulations prepared in PC 
Crash 8.0 software.

From the above presented literature analysis it 
seems that only a minor part of works on vehicle 
crash modeling includes the tangential coefficient 
of restitution [20, 21] or the use of a finite element 
method [35], and even less takes the resultant mo-
tion during the crash into account [38].

There were other approaches towards col-
lision modeling, such as [17] where a throw 
concept was used in a frontal collision analysis 
or predicting the vehicle motion after the so 
called ‘light collisions’ meaning the low speed 
collisions. Of course there is a group of works 
considering the collision theory in a general 
scope of applications to motor vehicles, such 
as [27] and [28]. A broad area of collision me-
chanics related to motor vehicles and the re-
construction of road accidents was considered 
in [18, 34].

Some papers show attempts to determine 
the coefficient of restitution [22, 31]. Therefore 
analysis in this paper focuses on answering the 
question whether it is useful to consider both the 
normal and the tangential coefficient of restitution 
in a crash model with planar motion adopted.

Figure. 1. Mutual position of both vehicles before the collision in PC-Crash (Source: PC-Crash)
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Such approach can also enable verification if 
the adoption of the specific coefficients facilitates 
obtaining the real values of the parameters of a 
collision. The approach is up to date in face of the 
modern software enabling both the complexion 
of the collision models and the use of computing 
power to run the simulations of various road ac-
cidents. New elements of research in this paper 
contain the analysis on a potential implementa-
tion of the tangential coefficient of restitution into 
a collision analysis in a simplified way as well as 
the attempt to specify whether the impulse given 
in the results of the simulations can be decom-
posed int two components – one normal and one 
tangential.

ASSUMPTIONS

Before performing the simulation of a colli-
sion presented in Figure 2 where the initial loca-
tion of both vehicle at the beginning of a collision 
is shown, some essential assumptions need to be 
made in relation to the mathematical model of 
collision which can simplify the discussed prob-
lem and enable comparison of the simulation re-
sults with the analytical calculations at the same 
time. These considerations were partially based 
on [16] and [38] because these works contain the 
mechanics of collisions in theoretical approach. 
The adopted assumptions are as follows:
 • the bodies of the vehicles involved in the col-

lision are considered as rectangular cuboids 
having constant mass (before and after the 
collision) and stiffness. There is also an ini-
tial point of contact in the middle of a contact 
plane between the vehicles (a vertical plane 
which contains the area of contact of the col-
liding vehicles). This point is an origin of a 
local coordinate system Ont, where O is a 

geometric center of the collision. Of course 
this point is only needed to apply the Ont sys-
tem, because in further analysis some param-
eters will be determined in relation to it;

 • vehicles used in the simulations had the lin-
ear suspension and their mass-inertia param-
eters were adopted from the program database 
containing the real values. Hence, the vehicles 
No. 1 and 2 reflect the real ones;

 • the vehicles moved on a road plane during 
the collision which occurred on a dry surface 
where the coefficient of adhesion was μ = 0.8;

 • before the collision the vehicle No. 1 was do-
ing 60 km/h, and the vehicle No. 2 – 50 km/h;

 • the initial mass of the unladen vehicle No. 1 
was 2020 kg, and was enhanced to 2300 kg by 
the mass of a driver and three passengers;

 • the initial mass of vehicle No. 2 was increased 
from 1500 kg to 1750 kg. Both vehicles did 
not carry any baggage;

 • in order to simulate a collision in which both 
vehicles are represented by solids rather than 
plane figures, it was necessary to specify the 
center of mass in each of the laden vehicles 
which was adopted in accordance to [29]. As 
a result the center of mass of the vehicle No. 1 
was 0.56 m and No. 2 – 0.57 m above the road 
plane in a vertical direction;

 • the initial adopted values of the coefficients of 
restitution were R = 0.1, R = 0.05 and R = 0.01 
in three separate simulations in PC-Crash. Of 
course it seems that the values 0.1 and 0.05 are 
not real due to the fact that a typical collision 
lasts very short and the typical damages to 
the vehicles involved are usually rather plas-
tic than elastic. Nevertheless, these values of 
R were adopted also in order to compare the 
simulation results for a side impact collision;

 • two coefficients of restitution in the mathemat-
ical model describing the collision have been 

Figure 2. The initial contact of both vehicles at the beginning of the collision (Source: PC-Crash)
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adopted as in [16]: Rn which is the coefficient 
in the normal direction and Rt in the tangential 
direction in relation to the plane of impact (a 
mutual plane of contact of the vehicles which 
is vertical and contains the area in which the 
vehicles collide).

It should be stressed that in PC-Crash the co-
efficient of restitution is only considered in the 
direction normal to the plane of impact.

The presented example of a collision is side 
and oblique, which means that impulses of the 
collision force has to be taken into account in the 
tangential direction as well. The mutual plane of 
impact is perpendicular to the road surface and at 
the same time tangent to the colliding vehicles at 
the point of an initial contact. The mathematical 
model describing such collisions can be adopted 
from, e.g. [16] and [38].

SIMULATION DESCRIPTION

To simplify a vehicle model used in PC-Crash 
in order to make it easy to use in a mathemati-
cal model of a collision, let us regard the vehi-
cle’s body as a set of quasi-rigid but deformable 
cuboids having a predefined mass, stiffness and 
the moments of inertia. The loss of mass of each 
cuboid during the collision is omitted.

In a PC-Crash manual available in the Inter-
net it was stated that the stiffness of the vehicle 
models is different for various parts of each ve-
hicle [37], which could be contrary to what has 
been assumed earlier. The wheels are half as stiff 
as a vehicle’s body, while the roof and the side 
pillars are 75% as stiff as the lower vehicle’s body 

[37]. Of course, in order to simplify the consider-
ations presented here, the vehicles, especially in 
case of the analytical calculations were assumed 
as equally stiff, because the main problem was to 
determine the most crucial parameters of the ad-
opted collision in the aspect of side impact and 
the coefficients of restitution. The main aim was 
to perform the simulation of a collision with the 
predetermined selected parameters, and to verify 
the obtained results with the use of the analyti-
cal calculations based on mathematical modeling 
and the already adopted values of the restitution 
coefficient.

The simulation of a side impact collision for 
the three adopted values of the restitution coeffi-
cient (R) has been conducted in accordance with, 
e.g. in [30]. For each case of R (0.01, 0.05 and 
0.1) the simulation time was 2 s and the duration 
of the collision was about 0.25 s.

SIMULATION RESULTS

Results of the simulations for each value of 
R have been presented in Table 1. They contain 
both the translational and the angular velocities 
determined before and after the collision, with the 
post-collision values marked with an apostrophe. 
Also the mass and the moments of inertia for both 
vehicles along with the resultant impact force im-
pulses have been presented, because they were 
the key parameters needed to complete the analy-
sis of vehicles collisions in planar motion. Basing 
on these results a further analysis with the use of 
certain calculations will be presented.

From the presented results some preliminary 
conclusions can be made. At first it should be 

Table 1. Results of a side oblique collision simulations for three different values of the coefficient of restitution

Vehicle No.
1 2

initial parameters

Mass [kg] m1=2300 m2=1750
Moment of inertia relative to the vertical 
axis passing through the center of mass of 
a vehicle [kg/m2]

I1=4277 I2=2729

Duration of the collision 0.23s

Coefficient of restitution R=0.1 R=0.05 R=0.01

Vehicle No. 1 2 1 2 1 2

Translational speed before the crash [km/h] V1=53.2 V2=46.5 V1=57.8 V2=47.5 V1=60 V2=50

Angular velocity before the crash [1/s] ω1=-0.88 ω2=-0.8 ω1=-0.57 ω2=-0.42 ω1=0 ω2=0

Translational speed after the crash [km/h] V1’=35.2 V2’=45.3 V1’=36.7 V2’=44.3 V1’=38 V2’=43.6

Angular velocity after the crash [1/s] ω1’=-3.31 ω2’=-4.73 ω1’=-3.12 ω2’=-5.07 ω1’=-2.96 ω2’=-5.09

Impulse of the impact force [Ns] 12850 14864 15689
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stressed that the speed before the collision ap-
pearing in the first two cases (R=0.1 and R=0.5) 
was smaller than predefined. It seems that PC 
Crash, with the use of a feature called ‘collision 
detection’ brakes the vehicles right before the 
collision as if a driver of each vehicle managed 
to brake slightly before crashing the opposite 
vehicle. However, a decrease in speed was larg-
est in case of the greatest value of R. Strangely 
though, in the third case (R=0.01) no prelimi-
nary speed decrease occurred. This could induce 
a hypothesis that the greater value of the restitu-
tion coefficient the greater decrease in a prelimi-
nary speed before a collision.

Another conclusion may be related to the 
impulse of an impact force which, as presented 
in Table 1, had the greater value, the smaller 
coefficient of restitution was. This agrees with 
the crash mechanics and the Newton hypoth-
esis, according to which an impulse from the 
phase of restitution divided by an impulse from 
the deformation phase produce the coefficient 
of restitution [16]. Moreover, the coefficient of 
restitution can in an indirect manner provide 
some elementary information about vehicles’ 
damages due to a collision. Hence, the lower 
value of the impulse of a collision force may 
result from the greater value of a the coeffi-
cient of restitution. This in turn may cause less 
damage to a vehicle taking part in a collision 
even if the same preliminary parameters are 
applied but with different values of the given 
coefficient.

To prove the above considerations the maxi-
mum depth of damages to the vehicles taking 
part in a simulated collision are presented in 
Table 2 for each adopted value of a coefficient 
of restitution.

The results presented in Table 2 correspond 
with the crash mechanics theory and the above 
considerations. The greater value of the coeffi-
cient of restitution provided the lower depth of 
damages to the vehicles involved in the simulat-
ed collision which shows that the coefficient of 
restitution may partially influence reducing the 
part of an impulse of an impact force lost due to 
a deformation of the vehicle’s body.

ANALYTICAL VERIFICATION OF 
THE SIMULATION RESULTS

In order to verify if the analytical calculations 
are suitable for checking the correctness of the 
simulation software it is necessary to determine 
some geometric and trigonometric dimensions. 
Let us now return to the initial position of both 
vehicles at the beginning of the collision (Fig. 3).

In Figure 4a the input angles specifying the 
initial positions of both vehicles at the first mo-
ment (the initial contact) of the collision have 
been presented. If two additional axes, attached 
at the point of the first contact, would be applied 
as in Figure 4, both perpendicular, then the angles 
between them and the axes of symmetry of both 
vehicle will be as shown in Figure 4. This in turn 
allows determination of the more necessary an-
gles α and β which will be useful to determine the 
components of the velocity of both vehicles.

Basing on the simple calculations the sought 
after angles can be determined:

α = 90º – 65º = 25º, and β = 195º – 180º = 15º
It is important to notice that the axes of sym-

metry of both vehicles in Figure 4a are not per-
pendicular, so the α and β angles are only to help 
determine the further, more necessary collision 
parameters.

Let us then introduce a local coordinate 
system Ont at the point of an initial point of a 

Table 2. Depth of deformation in a vehicle’s body at the adopted coefficient of restitution
Depth of the deformation in a vehicle R = 0.1 R = 0.05 R = 0.01

No. 1 [m] 0.36 0.39 0.39

No. 2 [m] 0.37 0.4 0.42

Figure. 3. The initial location of both vehicles 
at the beginning of a collision – preparation for 

determining the necessary angles (Source: PC-Crash)
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mutual contact between the vehicles, where O is 
the origin of this system (Fig. 4b). This will en-
able marking the distance between the center of 
mass of each vehicle and the center of the colli-
sion located at the origin of the Ont system. These 
distances at the beginning of the collision, marked 
with nC1, tC1, nC2 and tC2 for the vehicle No. 1 and 
2 respectively, will be necessary for the equations 
of motion used to describe this collision. From 
this figure it is clear that the only angle which will 
be furtherly used is α, because the vehicle No. 2 is 
parallel to the Ot axis.

In Figure 4b also the impulses of the collision 
forces respective for each vehicle (Sn1, St1, Sn2, 
St2) have been presented. They can be presented 

as scalars because they are only the components 
of the resultant impulses of a collision force act-
ing on each vehicle. It is worth remembering here 
that the motion during the collision was assumed 
as planar.

The distances between the geometric center 
of a collision (O) and the center of mass of each 
vehicle has been determined with the use of PC-
Crash, and have been presented in Figure 6, this 
time without the impulses so that the figure can be 
clearer. The measured distances are:

nC1 = 2.39 m, tC1 = 0.19 m, 
nC2 = 0.89 m, tC2 = 0.14 m,

with the length of the vehicle No. 1 equaling 5.06 m 
and No. 2 – 4.7 m.

Figure. 4. a) Mutual location of the vehicle 1 and 2 at the initial moment of the collision, 
b) The coordinate system Ont for the side impact collision Source: PC-Crash.

Figure 5. a) Location of the center of mass of each vehicle from O at the beginning of a collision, 
b) The directions of rotation on a road plane during the collision Source: PC-Crash
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In order to complete the scheme of the colli-
sion prepared in PC-Crash it is necessary to mark 
all the parameters needed to create a mathemati-
cal model describing the kinematic state of both 
vehicles during the crash. This has been presented 
in Figure 5a where the following parameters are 
marked:
− Sn1, St1, Sn2, St2 – components of both impulses 

of the collision force for the vehicle No. 1 and 
2 respectively;

− V1, V2 – the speed of the vehicle No. 1 and 2 
respectively (at the start the crash);

− ω1, ω2 – angular velocity of the vehicle No. 1 
and 2 respectively (at the start of the crash);

− nC1, tC1, nC2, tC2 – coordinates specifying the 
center of mass of each vehicle relatively to the 
geometric center of the analyzed collision;

− α – the angle between the vector of the speed of 
the vehicle No. 1 and the On axis.

In Figure 5b the positive rotation of each ve-
hicle on the road plane has also been marked. It 
was assumed that during the collision the vehicle 
No. 1 rotates counterclockwise and the vehicle 
No. 2 spins clockwise.

To determine the components of the velocity 
in the normal and the tangential direction versus 
the plane of the collision (to remind it is a vertical 
plane of a contact between both vehicles) the α 
angle was used, i.e. the angle between the veloc-
ity vector of the vehicle No. 1 and its longitudinal 
axis of symmetry which is parallel to the On axis 
(Fig. 5b). This angle will then be used to distrib-
ute of the velocity of the vehicle No. 1 into two 
components: the normal and the tangential one 
(Fig. 6). Although the components in Figure 8 are 

marked with the arrow which does not match the 
scale of the vectors in Fig. 5b the main purpose 
of presenting them in such a way was to highlight 
them as the necessary parameters used in a math-
ematical model of the presented example of road 
collision.

If the measured distances along with α are 
taken into consideration both velocity compo-
nents of the vehicle No. 1 (Fig. 6) will be:

v1n = V1cosα, v1t = V1sinα.
There is one simplification regarding the ve-

locity of the vehicle No. 2. Since it is parallel to 
the Ot axis (Fig. 5b), it can be assumed that its 
lateral component (v2n) is zero. So the longitudi-
nal component v2t = V2.

In Figure 8 most of the necessary collision 
parameters have been presented, except for the 
coefficients of restitution (Rn and Rt) where Rn is 
the restitution coefficient in the normal and Rt in 
the tangential direction. It should be mentioned 
that both symbols of these coefficients have been 
adopted in accordance with [16].

Before completing the mathematical model of 
this collision it is necessary to mention that the 
variables after the collision were marked with an 
apostrophe. The indexes ‘1’ used in the equations 
of motion indicate the parameters of the vehicle 
No. 1, and ‘2’ indicate the parameters of the ve-
hicle No. 2. The indexes ‘n’ and ‘t’ respectively 
denote the normal and the tangential direction 
(along the On and Ot axes respectively).

Using the symbols and the above assumptions 
the model of the analyzed collision can be repre-
sented by a set of the following equations based, 
among others, on [16]:

Figure 6. Velocity components and the angular velocities at the start of the collision
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a) normally to the impact plane (mutual contact 
plane):

  𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

(1)
b) tangentially to the impact plane:
 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

 (2)

c) in the rotation direction on a road plane, ac-
cording to the marked angular velocities as 
in Figure 8. Let us assume that the counter-
clockwise motion is positive and the clockwise 
– negative:

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

 (3)

Such a set of six equations contains ten un-
knowns, of which six are the post-collision ve-
locities (v'1n, v'1t, v'2n, v'2t, ω'1, ω'2) and four are 
the components of the impulse of a collision force 
(Sn1, St1, Sn2, St2), two for each vehicle, as in Figure 
6. These components can be determined in a sim-
plified way as follows:

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (4)

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (5)

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (6)

where α is the angle specifying the direction of 
motion (speed) of the vehicle No. 1 and the On 
axis (Fig. 5b). In this simplified method one can 
observe that the impulses S1 and S2 are equal as 
the resultant of the normal and the tangential 
components and the product of a force acting 
on both vehicles mutually. Hence another sim-
plification resulting from the data obtained in 
simulations:

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (7)
which can be made on the basis of only one value 
of the impulse given in the results (Table 1) for 
the two colliding vehicles.

The impulse of a collision force is given in 
Table 1 for each configuration of the coefficient 
of restitution. Since it is the side impact collision, 
it seems advisable to consider the adoption of the 
impulse in the direction of motion (speed) of the 
vehicle No. 1 (Fig. 7a) as a simplifying assump-
tion. Hence, it will be easier to determine the nor-
mal (Sn) and the tangential (St) component of the 
impulse of a collision force for each vehicle, as 
the α angle is also known.

The kinematic state of both vehicles at the 
end of the collision (post-collision parameters) 
can then be described by such formulas:

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (8)

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (9)

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

 (10)

DISCUSSION

In Table 3 the results of the analytical cal-
culations based, e.g. on [16] have been pre-
sented along with the results obtained in the 
simulations of the oblique side impact colli-
sion and the three adopted values of the res-
titution coefficient. Also the components of 
the impulse of a collision force have been 

Figure 7. a) The components of the impulses of collision force, b) Magnification of the selected area of Fig. 7a
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presented. As previously mentioned, this im-
pulse was adopted equal for both vehicles.Now 
the question is whether the coefficient of res-
titution could be useful if all of the unknowns 
have to be determined without the knowledge 
of the impulses of a collision force. If no such 
information is provided then it is necessary to 
consider another attempt towards the solution 
of determination the post-collision velocities. 
Let us introduce two coefficients of restitution, 
one related to the normal, other to the tangen-
tial velocities:

 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (11)

Such description of the coefficients still 
does not give any useful information as how 
to use them in determination of the unknowns 
from the formulas (8) – (10). Therefore some 
additional assumptions about the nature of the 
collision can be made as, e.g. in [16]. Let us 
assume that this is a model of a non-slip col-
lision where both vehicles remain in contact 
during the entire period of the collision and 
their surfaces do not slide over each other. In 
case of such an example deformations occur 
both in the shape and the volume of the ve-
hicles and the following transformations can 
be made [16].

Let us introduce three indicators combined 
as in [16], for the non-slip collision with the 
restitution of the tangential velocities:

 .

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

 (12)

The above formula has previously been pre-
sented in [38] as well but only in theoretical ap-
proach. Further in [16] it was assumed that the 
relative tangential velocity in a non-slip collision 
can be described as:
 

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (13)

whereas the relative normal velocity as [16]:
  

 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14) 

  (14)
where: wn – is the relative velocity of both ve-

hicles in the normal direction (On) before 
the collision;

 wt – is the relative velocity of both vehi-
cles in the tangential direction (Ot) before 
the collision;

 w’n – is the relative velocity of both ve-
hicles in the normal direction (On) after 
the collision;

 w’t – is the relative velocity of both vehi-
cles in the tangential direction (On) after 
the collision.

After solving the equations (13) and (14) 
both the tangential and the normal components 
of the impulse of a collision force can be nomi-
nated as in [16] but with the assumption that the 
relative velocities are taken from the initial mo-
ment of the collision:

Table 3. Results of the analytical calculations
Vehicle 1 2

Coefficient of restitution
R=0.1

calculations simulation calculations simulation

Translational speed after the crash [km/h] V1’= 33 V1’= 35.2 V2’= 42.6 V2’= 45.3

Angular velocity after the crash [1/s] ω1’= -3.39 ω1’= -3.31 ω2’= 0.37 ω2’= -4.73

Impulse of a collision force [Ns] Sn1 = 11646
St1 = 5430

Sn2 = 11646
St2 = 5430

Coefficient of restitution R=0.05

Translational speed after the crash [km/h] V1’= 34.5 V1’= 36.7 V2’= 44.3 V2’= 44.3

Angular velocity after the crash [1/s] ω1’= -3.48 ω1’= -3.12 ω2’= 0.93 ω2’= -5.07

Impulse of a collision force [Ns] Sn1 = 13471
St1 = 6282

Sn2 = 13471
St2 = 6282

Coefficient of restitution R=0.01

Translational speed after the crash [km/h] V1’= 35.4 V1’= 38 V2’= 46.6 V2’= 43.6

Angular velocity after the crash [1/s] ω1’= -3.07 ω1’= -2.96 ω2’= 1.43 ω2’= -5.09

Impulse of a collision force [Ns] Sn1 = 14219
St1 = 6630

Sn2 = 14219
St2 = 6630
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 𝑚𝑚1(𝑣𝑣1𝑛𝑛 − 𝑣𝑣1𝑛𝑛
′ ) = 𝑆𝑆𝑛𝑛1, 𝑚𝑚2(𝑣𝑣2𝑛𝑛

′ − 𝑣𝑣2𝑛𝑛) = −𝑆𝑆𝑛𝑛2, (1) 

 𝑚𝑚1(𝑣𝑣1𝑡𝑡
′ − 𝑣𝑣1𝑡𝑡) = −𝑆𝑆𝑡𝑡1, 𝑚𝑚2(𝑣𝑣2𝑡𝑡−𝑣𝑣2𝑡𝑡

′ ) = 𝑆𝑆𝑡𝑡2, (2) 

 𝐼𝐼1(−𝜔𝜔1
′ + 𝜔𝜔1) = −𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1 + 𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1,  

 𝐼𝐼2(𝜔𝜔2
′ − 𝜔𝜔2) = −𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2, (3) 

 𝑆𝑆1 = √𝑆𝑆𝑛𝑛1
2 + 𝑆𝑆𝑡𝑡1

2 , 𝑆𝑆2 = √𝑆𝑆𝑛𝑛2
2 + 𝑆𝑆𝑡𝑡2

2  (4) 

 𝑆𝑆𝑛𝑛1 = 𝑆𝑆1 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡1 = 𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (5) 

 𝑆𝑆𝑛𝑛2 = 𝑆𝑆2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼, 𝑆𝑆𝑡𝑡2 = 𝑆𝑆2 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝛼𝛼 (6) 

 𝑆𝑆1 = 𝑆𝑆2 (4) 

 𝑣𝑣1𝑛𝑛
′ = 𝑣𝑣1𝑛𝑛 − 𝑆𝑆𝑛𝑛1

𝑚𝑚1
, 𝑣𝑣2𝑛𝑛

′ = 𝑣𝑣2𝑛𝑛 − 𝑆𝑆𝑛𝑛2
𝑚𝑚2

, (7) 

 𝑣𝑣1𝑡𝑡
′ = 𝑣𝑣1𝑡𝑡 − 𝑆𝑆𝑡𝑡1

𝑚𝑚1
, 𝑣𝑣2𝑡𝑡

′ = 𝑣𝑣2𝑡𝑡 − 𝑆𝑆𝑡𝑡2
𝑚𝑚2

, (8) 

 𝜔𝜔1
′ = 𝜔𝜔1 + 𝑆𝑆𝑛𝑛1𝑡𝑡𝐶𝐶1−𝑆𝑆𝑡𝑡1𝑛𝑛𝐶𝐶1

𝐼𝐼1
,  

 𝜔𝜔2
′ = 𝜔𝜔2 + 𝑆𝑆𝑡𝑡2𝑛𝑛𝐶𝐶2−𝑆𝑆𝑛𝑛2𝑡𝑡𝐶𝐶2

𝐼𝐼2
 (9) 

 𝑅𝑅𝑛𝑛 = − 𝑤𝑤𝑛𝑛′

𝑤𝑤𝑛𝑛
= − (𝑣𝑣2𝑛𝑛

’ −𝑣𝑣1𝑛𝑛
’ )

(𝑣𝑣2𝑛𝑛−𝑣𝑣1𝑛𝑛),  

 𝑅𝑅𝑡𝑡 = 𝑤𝑤𝑡𝑡
′

𝑤𝑤𝑡𝑡
= (𝑣𝑣2𝑡𝑡

’ −𝑣𝑣1𝑡𝑡
’ )

(𝑣𝑣2𝑡𝑡−𝑣𝑣1𝑡𝑡). (10) 

 𝐴𝐴 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑛𝑛C1
2

𝐼𝐼1
+ 𝑛𝑛C2

2

𝐼𝐼2
,  

𝐵𝐵 = 1
𝑚𝑚1

+ 1
𝑚𝑚2

+ 𝑡𝑡C1
2

𝐼𝐼1
+ 𝑡𝑡C2

2

𝐼𝐼2
,  

 𝐶𝐶 = 𝑛𝑛C1𝑡𝑡C1
𝐼𝐼1

− 𝑛𝑛C2𝑡𝑡C2
𝐼𝐼2

. (11) 

 𝑤𝑤1𝑡𝑡 = −𝐴𝐴𝑆𝑆𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑛𝑛 = 𝜃𝜃𝑤𝑤𝑡𝑡, (12) 

 𝑤𝑤𝑛𝑛
′ = 𝑤𝑤𝑛𝑛 − 𝐶𝐶𝑆𝑆𝑡𝑡 − 𝐵𝐵𝑆𝑆𝑛𝑛 = −𝑅𝑅𝑤𝑤𝑛𝑛, (13) 

 𝑆𝑆𝑡𝑡 = −(1+𝑅𝑅)𝐶𝐶𝑤𝑤𝑛𝑛+(1−𝜃𝜃)𝐵𝐵𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 ,  

 𝑆𝑆𝑛𝑛 = (1+𝑅𝑅)𝐵𝐵𝑤𝑤𝑛𝑛−(1−𝜃𝜃)𝐶𝐶𝑤𝑤𝑡𝑡
𝐵𝐵𝐵𝐵−𝐶𝐶2 . (14)  (15)

Equations (15) allow determination of the 
components of the impulse of a collision force for 
the given example. Of course, one simplification 
has been made, i.e. the impulses were assumed 
equal for both vehicles, so the equations (15) pro-
vide results for both vehicles.

The main difficulty is to specify the value of 
both coefficients of restitution in order to receive 
similar results.

Here a hypothesis can be made, that because 
it is the non-slip collision, i.e. both vehicle do 
not slide on each other while in contact, the tan-
gential coefficient of restitution can be close to 
1, although it was discovered, e.g. in [20], that it 
could have different values, even more than 1 or 
less than -1.
 • Let us assume that Rt = 0.99 and Rt = -0.99.
 • Let us also assume that the normal coefficient 

of restitution will remain at the adopted val-
ues, i.e. Rn = 0.1, Rn = 0.05 and Rn = 0.01.

This will allow to compare the values of the 
resultant impulse of a collision force with those 
obtained in simulation (Table 1). In Table 4 the re-
sults of analytical calculations with the use of the 
values of both normal and tangential coefficients 

Table 4. Calculation results based on a model discussed, e.g. in [38]

Coefficients of restitution Calculation of the impulse 
of a collision force [ns]

Impulse of a collision force obtained 
in simulation (without rt) [ns]

Rn = 0.1
Rt = 0.99

14433 12850

15691 14864

16281 15689

Rn  = 0.05
Rt = 0.99

13768 12850

14978 14864

15548 15689

Rn  = 0.01
Rt = 0.99

13261 12850

14408 14864

14956 15689

Rn = 0.1
Rt = -0.99

15688 12850

16802 14864

17495 15689

Rn  = 0.05
Rt = -0.99

15068 12850

16120 14864

16789 15689

Rn  = 0.01
Rt = -0.99

14574 12850

15577 14864

16227 15689

of restitution have been presented in such a way 
that the resultant impulse of the collision force 
is closest to those obtained in the simulations by 
changing the values of both coefficients of resti-
tution. The adoption of the tangential restitution 
coefficient results from the previous research, for 
example in [20], showing that it can change from 
-1 to 1 because the vehicles perform both trans-
lational and rotational motion during a collision 
remaining in contact at the same time. In this pa-
per the author assume that the vehicles remain in 
contact during the whole period of the collision.

The obtained analytical results show that the 
determined impulses are of the same order of mag-
nitude as those specified by PC-Crash, although 
in general they are greater than those obtained in 
the simulations because both the normal and the 
tangential coefficient of restitution has been used. 
Also it can be noticed that the closest pair of co-
efficients enabling almost the same impulse as in 
the simulation are either Rn = 0.05, Rt = 0.99 or Rn 
= 0.01, Rt = 0.99. Of course this do not give the 
whole spectrum of possible solutions as the normal 
coefficient of restitution can be between 0 and 1, 
whereas the tangential has more possible values, 
even the negative ones because it specifies the phe-
nomena between the vehicles while in contact.

Having the specified impulse of the collision 
force it is easy to use the formulas from (7) to (9) 
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to calculate the post-collision velocities and the 
resultant speeds.

Despite the differences in the results obtained 
in the impulses (Table 4), some regularity can be 
noticed, because the impulse of a collision force 
tend to increase along with the decrease of the 
coefficient of restitution which shows how im-
portant this parameter is. Secondly, the PC-Crash 
software has an initial value of R = 0.1 which 
seems too much for such phenomena as a vehicle 
collision, lasting e.g. about 0.05 s.

The differences in the obtained results may 
be discussed basing on some facts. The impulse 
of the collision force in the simulation was deter-
mined by the algorithm used in the Kudlich-Sli-
bar method and the analytical calculations were 
implemented on the basis of a model proposed 
in a book regarding the crash mechanics in the 
discrete structures. What is more is that the PC-
Crash duration of the collision seems too long if 
the momentary phenomena in crash mechanics 
would be taken into account.

CONCLUSIONS

After adoption of the collision model for 
the vehicles regarded as the bodies with rough 
surfaces and the lack of sliding between them 
the restitution coefficient can influence mainly 
the impulses of the collision force and indirect-
ly the post-crash parameters. In practice, such a 
collision model of the side impact is rather dif-
ficult to analyze thoroughly due to short period 
and some simplifications, thanks to which ana-
lytical calculations can be prepared. As a tool 
for the preliminary impact assessment and tes-
timony, as well as accident reconstruction, this 
obviously simplified procedure may be used if 
the crash mechanics would be implemented in 
the forensic work.

The results obtained here are only an at-
tempt to stress the importance of the restitution 
coefficients for the normal velocities and a pos-
sibility of the use of a coefficient of the tan-
gential velocities in modeling of the road traffic 
collisions.

Further research may provide analyzes on 
the influence of the discussed coefficients of 
restitution in case of a collision with the 3D 
motion (resultant motion) included as has al-
ready been highlighted by the authors in the 
previous selected papers.
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